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Abstract— A new mathematical formulation is presented for the analysis of a partially embedded rod
under torsionless axisymmetric loadings. With an account of both the axial and radial compatibilities
between the rod and the embedding medium through the use of a higher-order rod theory, the three-
dimensional load-transfer problem is reduced to a pair of Fredholm integral equations of the second
kind whose solutions are computed. By virtue of the present formulation, a variety of physical
loading-boundary conditions which were inhibited in past treatments can be evaluated. A com-
prehensive set of numerical results appropriate to different axial loading conditions, material
parameters, and geometric configurations for the problem are provided as illustrations.

1. INTRODUCTION

The response of a partially embedded rod of finite length in an elastic half-space under external
loads is a subject of considerable interest in the field of applied mechanics. In material and
aerospace engineering, this type of investigation is relevant to the study of fibre-reinforced
composites for which the load-transfer process between the matrix and its embedments is
important (McCartney, 1989). In civil engineering, such problems are directly related
to the soil-structure interaction analysis of piles and anchors commonly employed in
foundation design and construction practice (Scott, 1981). For this class of three-dimen-
sional problems in the theory of elasticity, rigorous attempts have thus far been limited. On
the axisymmetric problems of axial loading and torsion, the works by Luk and Keer (1979)
and Luco (1976) are some of the noteworthy contributions. In these studies, the embedded
rods are assumed to be rigid. As a consequence, the influence of the deformability of the
embedment on its mechanical interaction with the surrounding medium has not been
addressed. The general need to account for the foregoing aspect in practical problems,
however, is illustrated in the exact treatment by Muki and Sternberg (1969) on an axially-
loaded infinite rod immersed in, and fully bonded to, an infinite medium. Of greater interest,
though, is their subsequent contribution to the more difficult problem of axial load diffusion
from a partially embedded rod to a semi-infinite solid. With reference to a pilot study
contained in their preceding treatment, Muki and Sternberg (1970) employ an approxi-
mative scheme in which the embedding medium is extended throughout the half-space
and a finite one-dimensional elastic continuum governed by the elementary rod theory is
introduced into the region to represent the effects of the embedment. By equating the
average axial strain fields of the two media over the common domain, the load-transfer
problem is reduced to a Fredholm integral equation of the second kind. Along a similar
analytical framework, the problem of a partially embedded bar under lateral loads and
moments has likewise been considered (Pak, 1989). With the adoption of the classical beam
theory for the embedment, it is shown that the asymmetric load-transfer problem is also
amenable to analytical treatment.

The mathematical appeal and practical usefulness of elementary structural theories in
numerous engineering applications notwithstanding, their incorporation into this class of
structure-continuum interaction problems unfortunately can lead to some fundamental
defects. For the finite-rod problem of interest to Muki and Sternberg (1970) for instance,
both the axial and radial displacements of the embedment will generally be dependent on
the tangential as well as lateral boundary forces exerted on it by the surrounding solid.
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With the elementary rod theory which can only address axial deformation due to
longitudinal loads, however, one is inherently inhibited from observing proper lateral
displacement and traction compatibilities between the two interacting media. Besides run-
ning the risk of being unphysical, such an approximation can pose severe limitations on the
relevance of the analysis to such important issues as the induced radial stress distribution
and the influence of Poisson’s effects on the system response.

To address these concerns, it is evident that a more comprehensive treatment for this
class of problems is necessary. The purpose of this communication is to introduce such an
entry for the examination of the torsionless axisymmetric response of a finite embedded
rod whose length of significant load-transfer is suitably large compared to its lateral
dimension. In the framework of classical elastostatics and a theory of rods which can
accommodate radial deformation, a mathematical formulation for the analysis is developed
which is capable of accounting for (i) the deformability of the embedded rod in both the
axial and radial directions, (ii} the vectorial effects of contact and kinematic interaction
between the rod and the medium, (iii) the Poisson’s ratio mismatch of the two media, and
(iv) more general boundary and loading conditions at the terminal cross-sections of the
embedment. As will be shown in the ensuing derivation, the three-dimensional load-transfer
problem can be reduced to a pair of Fredholm integral equations whose solution can be
computed. To facilitate direct engineering applications, a set of numerical results appro-
priate to a number of practical loading conditions, material parameters, and geometric
configurations are included as illustrations.

2. MATHEMATICAL FORMULATION

In a circular cylindrical coordinate system (r, 8, z) whose unit base vectors are denoted
by {e,, e, €.}, one considers a cylinderical rod B of length L and radius a partially embedded
in a semi-infinite medium S which has a traction-free planar surface (see Fig. 1). For
reference, the open cross-sectional region of the rod is denoted by IT; the open half-space
is defined by H = {x|z > 0}; the cylindrical subdomain of H occupied by the rod is
designated by D = {x|(r,)eIl, 0 < z < L} ; and the open cross-section of D at z =5 is
labelled as I, = {x|(r, O)eIl, z =s}. Apart from the stated immediate objectives, a
primary goal of the present treatment is to establish a basic framework for the general
analysis of the load-transfer characteristics of a cylindrical embedment whose stiffness is
suitably high compared to that of its surrounding solid, and whose radius is relatively small
compared to its length of embedment. To focus on the fundamental aspects of the spatial
load-transfer problems of interest, the rod and the embedding medium are assumed to
be composed of homogeneous, isotropic, linearly elastic materials for simplicity in this
exposition.

For the axisymmetric problems under consideration, the response of the rod-medium
system can be fully described by the axial and radial displacement fields, both of which are
independent of 6. To render the analysis of the mechanical load diffusion more tractable,

Fig. 1. A partially embedded rod in a half-space.
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the embedding medium is extended throughout the half-space H and a fictitious continuum
B, is introduced to D such that the mechanical behavior of the cylindrical region is equivalent
to that of the actual embedment (Muki and Sternberg, 1970). Appropriate to the class of
problems of interest, the extended medium S, will be regarded as a three-dimensional body
within the framework of classical elastostatics. In contrast, the continuum B, will be treated
as a linear elastic rod in the context of a suitable structural mechanics theory. To provide
a practical mechanism to deal with the complicated interaction between the two media,
however, the development of a simple and yet rational theory which can provide a systematic
account of the distributed longitudinal and lateral loads and their relationships to the axial
and radial displacements of the rod B, is needed. For the construction of the desired
framework, the use of the principle of minimum potential energy and the calculus of
variations is perhaps the most convenient. To this end, it is useful to recognize that the
primary deformation mode for an axially-loaded embedded rod of sufficient slenderness
and stiffness is axial compression and translation in the longitudinal direction. With this
observation in mind, it thus seems logical to represent the axial displacement field w* of
the rod, in a first approximation, as a function of z only. In an axial compression of a rod,
however, it should also be evident that there would generally be a corresponding radial
displacement field »* due to Poisson’s effect. Moreover, because of its lateral confinement
by the surrounding matrix, the cylindrical embedment is likely to experience significant
internal radial compression as a result of the load-induced boundary lateral pressure acting
on its circumferential surface. As a rudimentary attempt to capture these physical aspects
without incurring undue complications, the first nontrivial approximation of the radial
variation of u* over the cross section I, as linear is adopted. In addition to their physical
relevance and analytical appeal as mentioned above, these kinematic assumptions have
proved to be capable of modeling the phenomenon of radial shear which has been found
to be important in wave propagation problems (Mindlin and Herrmann, 1951). Taking

W, 2) = W), w(an) = (;’z)u,(z), M

one is thus led to write the total potential energy of the rod under deformation as
1 dw, ¥ u, Y
L ‘2‘ ()“* + 2/‘*) (“a’f) + 2()"* + l‘*) (”";)
= f uy\ (d du, ¥
o * w u,J (du
20— * LA Gt A
+ A*(a)( dz )+ 2Aa2(dz)

+J; {2, () +1,(Du(2)} dz

Adz

= P 0wy (0)+ P (L)W, (L)~ 0, (0)u, (0) + O (L)u,(L). (2)

With reference to the notations and sign convention in Fig. 2, ¢, and ¢, denote the lineal

Fig. 2. Axisymmetric loads on the rod B,.
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densities of the distributed longitudinal and radial bond forces acting on B, ; P, and Q,
are the cross-sectional axial force and radial shear defined by

P (z) = —J ok d4A, 3)
1.

0,(2) = — L 0*(2) da, )

where ¢, and o, are the components of the Cauchy stress tensor; 4,, u,, 4 and J stand
for the two Lamé’s constants, the cross-sectional area, and the corresponding polar moment
of inertia of the rod, respectively. To ensure that the mechanical behavior of the composite
region D resembles that of the actual embedment under the foregoing loadings, B, is to be
characterized by

Hy He— s > 0» (5)

Ay = he—iy >0, (6)

where the subscripts ¢ and s denote the corresponding quantities of the embedment and of
the surrounding solid, respectively.

From the first variation of ¥ with respect to both u, and w,, one finds that the two
Euler’s equations of equilibrium for the rod are

d?w 2A,A\du
eI\, A+ p A 24,4\ dw,
o e e S ®)

In the axial direction, the relevant boundary conditions for the present problem are

dw . u
— (A +2n,0)4 —d;”i —24,A (;"‘) = P.(0) (9a)
or
w,(0) = wq (9b)
atz = 0 and
dw u
— (A +2n,)4 ~az—* —24,4 (f) = P (L) (10

at z = L. In the radial direction, the boundary conditions of interest are
u, J\du
- ("52—)‘&; = 0,00 (11a)
or
1, (0) = u, (11b)

atz = 0and
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B YAy,
_(7.)321 = Q,(L) (12)

at z = L. With different combinations of the equations in (9) and (11), there is a variety of
physical loading and boundary conditions on the rod that can be investigated. As will be
illustrated later, however, there is no loss of generality to consider the load-transfer problem
associated with natural boundary conditions only. To this end, consider the response of a
partially embedded rod whose unembedded terminal cross-section is subjected to an axial
load P, and a radial shear Q,. As can be anticipated, the embedment B, will generally see
nonzero values for the distributed bond-forces 7, and g, acting along its length, as well as
terminal loads in the form of P,(0), P (L), Q,(0) and Q,(L). To satisfy equilibrium in
both media under the external loadings, the extended medium must therefore receive the
opposite reactions of the distributed bond-forces ¢, and ¢, acting in D, in addition to
concentrated load-transfers of P,—P,(0) and Q,—0Q,(0) at I, and the terminal load-
transfer of P (L) and Q,(L) at Il,. Issues related to the possible presence of concentrated
load-transfers as a result of structure-continuum formulations have been discussed else-
where (Muki and Sternberg, 1970 ; Pak, 1989) and will not be repeated here for brevity. In
the context of the present formulation, the response of the extended medium to the foregoing
loads can be expressed in terms of a pair of normalized vector influence fields
8 (x; 5) = (4%, 0, 4%) and 6%(x; 5) = (4%, 0, 4F) which are defined as the displacement fields
at a point xeS, due to suitably distributed axisymmetric internal force fields on II,
acting in the positive z- and r-directions, respectively. For the convenience of usage, the
normalization of #%(x;s) is done in accordance with (3) while the one for &%(x;s) is
performed in the sense of (4). To be consistent with the kinematic assumptions of (1) on
the cross-sectional deformation of the rod, the source field that yields a uniform u, over T1
and the one that gives a linear variation of u, over the same region in the interior of an
infinite elastic medium are adopted. With the aid of the foregoing influence fields, the
displacement of the half-space can be written as

u(x) = [Py~ P (0)Ja*(x; 0)+ Py (L)d*(x; L) +[Q0 — O, (O)]d*(x ; 0) + 0, (L)d"(x; L)

+J; q*(s)ﬁz(x;s)ds%—f ()" (x; s)ds, xeS,. (13) (13)

0

To ensure that the axial and radial deformations of B, are suitably compatible with that
of S, over the common domain D, the imposition of a set of bond conditions is necessary.
For its intuitive and physical appeal, the following set of requirements is enforced
over the length of the embedment : (i) the average of the axial displacement u, of the half-
space over II, be equal to that of the rod, and (i) the average of the radial displacement
variation «,/r be equal between the two media. These two bond conditions can be expressed
as

1
W*=2Lzusz, 0<z<L, (14)
u, 1 [ u
. S L <
2 AL,rdA’ 0<z< L. (15)

With the aid of (13), the foregoing equations translate to

wa(2) = [Po— P, (0)]U%(z; 0)+ P (L) U%(z; L) +[Q0— 0, (O] U F(z; 0) + 0, (L) UF(z; L)

L
+f q*(s)z?f(z;s)ds-f-j Uz 9ds, 0<z<L, (16)

0 ¢
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u, iz N A
" Py P O107(; 0) + Py W)U 1)
+[Q0— 0, (OT8(z; 0+ Q (LY UX(z; L)
L L
+J q*(s)ﬁ,z(z;s)ds+f t,)URz;9)ds, 0<z<L, (17)
0 0
where
. 2 [,
Uz(z;s)=; iz (z,r; s)rdr, (18)
0
. 2 [ .
Uiz, s) = i Uz, r;s)rdr, (19)
JO
"y 2 (7 .
U? (z;s)=? af(z, r;s)rdr, 20)
JO
. 2 [
U, (z;s)=; al(z, r; s)rdr. ' (21)
JO

3. GOVERNING FREDHOLM INTEGRAL EQUATIONS

For further reduction of the governing equations, it is useful to note that

J' 7. U(z; 5)ds = (4, +2#*)AJ dzdsz() 0 ) ds +2/l AJ dug(s)

U(z;s)ds
(22)
for an influence field U. Through an integration by parts with a proper account of the

possible discontinuities of the integrands, one finds with the aid of the boundary condition
(9a) that (22) gives

,[L 3. U(z; 5)ds = P (0)U(z;0)— P (L)U(z; L)
0

+(A*+2u,,)A( [ ()00 (z s)] +w*(z)[ U(z s)] >

L U 2,4
+(1*+2;4*)AL w*(s)—s— ;

*(s) (z s5)ds. (23)

Likewise, by virtue of (8) and (11a), one can show that

_[L () U(z; ) ds = 0, (0)U(z;0)-Q, )

([P o] —ue| L | )

L 27
MJ L)0(z;5)ds+ JJ “*(S)Q’ITJ(Z”)dS
P 0 Os

1 2 j wa(s) 2 (24)
a 6
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Upon application of the foregoing results, the bond conditions (16) and (17) can be
reduced to two coupled integral equations on the displacements u, and w,,. In terms of the
dimensionless parameters

P ]
==t (25)

Z= =

R [F

P .
y =, L=
a

QN

the governing equations for the structure-medium interaction problem can be expressed
as

AZ@W(Z) + AS(2)i(2) + BL(2)W(0) + BZ(D)W(L) + C3(2)a(0) + C5(2)i(L)
L L
+f KZ(@zZ; 5)yw(s) ds+ j K3(GZ;5Hua@E)ds=F,(2), 0<z< L, (6)
0 0
ALZEW(E) + AR (D)iu(Z) + BR(Z)W(0) + BR(2)W(L) + C(D)a(0) + C5(2)i(L)

L L
+J Ki(z; 5)w(s) d5+j K&GE; Hu()ds=Fr(2), 0<z<L, 27 (20

where
FaUz Bt
Ag(z-) =K a- (Z-, -) "15
Az
aUR tas
Rezy -, =

AZ(Z) =K a- (Z’ )Ji—’

3 BN

AFQ) = | F @9 |

Az

[ oUR T
ARE) = 13| - @:9) |-t (28)

oU?
BY(?) =, =5 G 0)+x3UR(Z;0),

e Uz -
B3(2) = —xl—gs.—(z;L)—KaUz (z; L),

Z

oU7y
BR(E) = 115 (550 + ;USG5 0),

a Z

BR(@) = —x;—- 5 & D - US(E; D), (29)
R
1) = 2z 0,
Cte) =~k 2z D),

. U} _
C%(Z) =k, —gs:—(z; 0),

4@ = —x, L ), (30)
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oo Ut oUR
K%(Z;S)=K1~5S.2—(z;s)+xsﬁ(2;i),

s orUr u?
K5(2;~v)=xz‘5§§- (£58) =&, P (2:5) -1, UXZ:5),
P *Uf Ul
Ki(Z;5) =Ky 55 (Z:8) 4K~ (2:9),
§ 05
o *Ur oUy
KXz 5) = Kooy (Z:3)—xK, A (Z: 85—k URGE; 5), (3D

Fz(f) = —POU:Z(E;O)——Q—OUf(Z_;O),
Fp(Z) = — PyUZ(Z; 0)— Q,UR(Z; 0), (32)

U%(2;3) = 2np,aU% (z;5), UX(Z;5) = 2npaUR(z; ),

URGE; 8) = 2npa®UR(z;s), UZ(Z:5) = 2npa’U%(z; s), (33)
5 Py 3 Qo
0= Zn#;a'js O = ‘2*7%"/;;2‘, (34)
A2, o, Ay 20y
AL T O T T T (33)

For the analysis of (26) and (27), any two quantities, one from each of the conjugate pairs
(Po, w(0)) and (@, @(0)), can be regarded as prescribed parameters. With such facilities,
different combinations of the end-conditions in (9) and (11) can thus be evaluated by
virtually the same method. In general, the solution to the pair of governing Fredholm’s
integral equations of the second kind yields the axial and radial displacements of the rod,
which in turn render the response of the system determinate through (7) to (13).

4. INFLUENCE FIELDS

For the determination of the influence fields G%(x; s) and &@*(x; s} in an elastic half-
space, it is convenient to employ the method of potentials in the theory of elasticity. For
torsionless and rotationally symmetric problems such as those under consideration, the
solution of the homogeneous displacement equations of equilibrium for an elastic medium
can be represented, without loss of completeness, as

2 1 .
u(r, 2) = e:V o— 2(1’ :;)\SV(QZ V(I)), (36)

where ®(r, z) is a biharmonic function satisfying

Vid(r,z) =0, (37)
with
V4 — V2V2
* 18 @

Ve oo s (38)

S o T

in cylindrical coordinates (Love, 1944). For the internal-load problems of interest, (37)
must be appended by the traction-free condition at z = 0 that
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6.(r,0)=6.(r,00=0, r=0, (39

and the regularity conditions at infinity that
60, Jri+z’- . (40)

Case A: #(x;s)
The influence field for the axial load-transfer is defined as the response of the half-
space to the distributed body-force field

1
——— . r<a
R(r) = 6%(r,s7)—6%(r,s7) = < 2na/a*—1? 1))
0, r>a

whose resultant is unity. By virtue of (36)—(41) and the conditions that #Z, #Z and 62 are
continuous throughout the medium, one finds a boundary value problem which can be
conveniently solved by the method of Hankel transforms. Being a particular solution of
(37), the desired influence field @%(x;s) can be shown to admit the following integral
representations :

W2, 2;5) = f Q2 5) (5)5 Jo(re)de, 2)
(218 = — f vs(&, 25 9) (é)ﬁfx(f)dé’ 3)
where
0,6, z:5) = —— { (B—4v,+Elz—slye 9=+ }
2 T = B U —v)E L((5—12v,+8v2) + B—4v)E(z +3) +28%25) e=5+9
B —(z—s)ée o4
R (T R S P
2 = s';n(:f) 44)

and J, is the Bessel function of the first kind of order p. An integration of (42) and (43)
according to (18) and (20) leads to

Az 1 @ _ sin(af)

02639 = o [ a6, 99 @)
,. -1 i
07639 = o | (62929 1 eap )

In their dimensionless forms, the requisite influence functions due to the axial load can thus
be expressed as

U%(z;5) =2 f Q,(8, 7: 5) S‘“f) () dE, @7
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U5 5 — °°ﬁ .. sin (§) r
HEZ5=-21 »n&id (1—-Jo(&) dE. (48)

Case B: d%(x;s)

The influence field for the radial load-transfer is defined as the response of the half-
space to the distributed internal load

3r
- - A R — S /]
P(r) = 68(r,57)—6%(r,s") = 47:a2\/a2—r2 (49)
0, r>0

which has a unit resultant according to (4). Sub;ect to (37), (39), (40), (49) as well as the
conditions that 47, 4f and 6% are continuous in the medium, one finds that the requisite

influence field @®(x; 5) can be expressed as

&;"(r,z;s)———_L Qi z;5 Tk (50)
ﬁf‘{r,:’;S):L AT )i@gf,u)de: (s1)
where
QuEzis) = { Ea—s) e~y }
e £ 8(1—v )& (41 —2v)(1 —v)+ B =4 )E(z—5) — 287 zs) e =19 )7
N (3—dv,—Elz—s])e s 4
Nz =g {((5ww 12, + 8v7) — (3w4v5)€(z+s)+2£_zzs)e“5(:‘”)}’
3/
- 2(29-229)

Accordingly, the definitions of (19) and (21) yield

sin {af) _cos (ad)
(ad)’ (@)

OR(zis) = — = mﬂl(é,z;S)( )Jl(a@df, (53)

Znaﬂ;

. ofSin@d)  cos(ad)
Znazysﬁ }’I(g,z,s)( @’ (@d) )(1“10(55))d€, (54)

OR(z;s) =
respectively. By virtue of (53) and (54), the dimensionless influence functions for radial
loads are given by

URGE 5 = -3 f ) ﬂi(f,fés‘)(%a - ‘-’3?5))1,@ ae, (55)

(SH}EE) cos (5))

R ER S)“3J (& 2;8) (1—Jo(Endé (56)

As all the integrals in (47), (48), (55), and (56) can be derived analytically (see Appendix),
the influence functions can be evaluated in a straightforward manner. Apart from its
mathematical appeal, such a feature renders the numerical solution of the pair of integral
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equations an economic process. For further analysis, however, it is relevant to note that
the second-order derivatives of UZ, UZ, UX and UZ, which constitute the kernels of the
integral equations, are all square-root singular at z = s. For an accurate solution of the two
governing Fredholm integral equations, the resulting singularities of the kernels, while
integrable, should be accounted for in the numerical process.

5. NUMERICAL RESULTS

For an effective treatment of the pair of weakly singular integral equations, it is useful
to employ a numerical method which can negate the effects of the singularity on the
convergence of the solution. To this end, the method of singularity subtraction together
with a closed N-point Clenshaw—Curtis scheme (1960) is found to be most effective. For a
rod of L = 20 for instance, accurate results can be obtained with N = 60. By virtue of the
present formulation, a variety of loading and boundary conditions for the axisymmetric
load-transfer problem can be investigated. For instance, one may consider the axial com-
pression or extension of an embedded rod whose upper end is either fixed or free radially.
One can also examine the response of the rod to an applied radial shear load on its crown
which is either fixed or free in the longitudinal direction. In view of their prevalent practical
interests and the need of brevity, only the solutions associated with axial loading will be
presented. In what follows, the material characterization of the rod-medium system will be
given in terms of the shear modulus ratio i = u./u, and the Poisson’s ratios v, and v,.

By setting 0, = 0 and P, = 1, one can determine the response of a smooth-ended rod
per unit axial load via the integral equations (26) and (27). Typical axial displacement
profiles of the rod for different modulus ratios are shown in Fig. 3 where all solutions are
found to exhibit smooth variations. As the modulus of the rod increases, one can see that
the axial displacement would gradually approach a constant, signifying that the rod can
eventually be regarded as rigid. The specific value of g for such a delineation, however,
depends on the length of the embedment and the Poisson’s ratios of the two media. For
the lateral response, it is evident from Fig. 4 that the variation is most significant at the top
region. Despite its limited magnitude, the radial displacement is found to be quite sensitive
to the values of v, and v, with the possibility of having # positive or negative depending on
the particular circumstances. At the bottom of the embedment, however, a localized radial
expansion apparently persists in all cases due to the terminal load-transfer and stress
concentrations.

In many engineering applications, the quantity of particular interest is the relationship
between the top response of the rod and the applied loads. For the axial-load problem
under consideration, the axial compliance function defined by

0 T 7 T ~
[ Lioy e
r i/ Lo L=20
s i I v, = 0.2 ]
N //’ v, = 0.2 ]
.’ //
iy
Z 10f /’V ]
[ o _ ]
L L= 10-------
s A= 50— ———-
18 Sl A= 200~ - - - ]
P 2= 1000 ===
i | [|
20l Ll L )
0.0 0.2 0.4 0.6 0.8
w/ P,

Fig. 3. Axial displacement of a smooth-ended rod.
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[ Ve =028 ———— 4/,}/ ]
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Fig. 4. Radial displacement of a smooth-ended rod.

#(0)
P,

CA A

(57

is perhaps the most important. To this end, its variations with a wide range of j, L, v, and
v, are presented in Figs 5 and 6. As can be seen from the result, all four parameters can

0.8

H

10000

0.8 T
L=20,v, =02

0.8 i v, = 0.0 - ]
’ k- Ve = 0.1 ---~~----

A ve= 0.2 —————

"'\>\"‘;, Ve = 0.3 - - = -

- NXYL i
04 U Ve = 04— mm—

r N

F Q\\\\

e

0.2+ e R __
0.0 1 |

10 100 1000

Fig. 6. Influence of v, on axial compliance of a smooth-ended rod.
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exert a major influence on the axial response. Of immediate practical significance is the
confirmation of the existence of a limiting length beyond which further increase in em-
bedment will not result in further reduction of the compliance. From the illustration, one
can also observe that the function has a lower bound which depends on the length of the
embedment and the Poisson’s ratio of the medium, but is independent of the Poisson’s ratio
of the rod. On the occasion that both the length and stiffness of the rod tend to infinity,
one could further deduce from the figures that the influence of both v, and v, on the axial
response would disappear. This is consistent with the observation that the problem would
closely resemble one of pure shear in such a limit. At the other end of the picture, one may
also notice the coalescence of the solutions for different lengths as j — 1. Such a trend is,
however, in full accord with physical intuition and well supported by a direct consideration
of equations (7), (8), (16) and (17) in such a degenerate circumstance.

To assess the influence of boundary conditions on the load-transfer problem, the
solution pertaining to a rod whose upper end is subject to the constraint #(0) = 0, henceforth
referred to as the rough-end case, is also evaluated. As far as the axial displacement is
concerned, such a solution is found to be almost identical to its corresponding smooth-end
result along the full length for the static problem under consideration. The comparison of
the two radial responses, on the other hand, is more instructive, As an illustration, the
rough-end counterpart of Fig. 4 is given in Fig. 7. From the comparison of the displacement
profiles, the anticipated departure of the two solutions at the top end of the rod is trans-
parent. Nevertheless, the corresponding pairs of responses do converge rapidly to the same
curve as 7 increases which is in tune with Saint-Venant’s principle. A revelation of greater
importance though is the amount of radial end-shear that can be induced due to the fixity
condition. To illustrate the significance of the problem, the ratio of the induced end-shear
0, to the applied axial load B, for the foregoing rod-medium configuration is plotted in
Fig. 8. From the display, it is clear that the shear load can easily be of the order of 20-30%
of the axial load in either radial directions depending on the relative compressibility of the
two media. The fact that there exist finite asymptotic limits for Q4/P, as ji — oo should
also warrant some attention. Such a consequence is, however, not in conflict with the decays
of #(0) in Fig. 9 since the end-shear induced by the fixity condition is a function of not only
the smooth-end displacement response but also of the shear modulus of the embedment.

6. SUMMARY

In this paper, a new treatment is presented for the analysis of a partially embedded
rod under torsionless axisymmetric loadings. With the aid of a theory of rods which can
accommodate radial deformation, a mathematical formulation which can provide a rational
account of both the axial and radial compatibilities between the two media is established
in the form of a pair of Fredholm integral equations of the second kind. Owing to the
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Fig. 7. Radial displacement of a rough-ended rod.
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Fig. 9. Top radial displacement of a smooth-ended rod.

generality of the analysis, a variety of physical loading-boundary conditions which were
intractable in past treatments can be incorporated. A comprehensive set of numerical
results appropriate to different axial loading conditions, material parameters, and geometric
configurations for the problem are provided as illustrations. In addition to furnishing
information that are pertinent to direct engineering applications, the present treatment
should prove useful in providing a consistent framework for a comprehensive analysis of
this class of problems.
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APPENDIX

Notation

S(:n.p) = Lw £ e~sin (£)J,(6) dé,
C(d:inp) = f £ e~ cos (£)J,(8) dé,
S: n) = fw £ e~sin (&) de,

C(d;n) = Jw Ene%cos (&) dE.
0
ao=d—i, d>0.

Results

S(d; ~1) =tan! <‘—11>,
S@iny=Im{—") n>—1,
(d_i)n+l

C(d;n) =Re ((d ,)Hl), n>—1,
dz 4 dz 1/2 dz 4— 2 —A2]12 2 —
S(d;_2,1)=[¢/ +4+ } _[\/ + d] d szr4 d:| +§sin—'[‘/d +4 d]_d,

2 4 2

S(i ~1,1) = I [ /5 T—a),
Cd; —1,1) = Re[Ja*+1—q],

S@;0,1) =Im|1— —2 ]

C(d;0,1) = Re| 1—- —= ]
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